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Molecular weight effects on chain pull-out fracture of reinforced polymeric interfaces
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Using Brownian dynamics, we simulate the fracture of polymer interfaces reinforced by diblock connector
chains. We consider the mushroom regime, where connector chains are grafted with low surface density, for
the case of large pulling velocities. We find that for short chains the interface fracture toughness depends
linearly on the degree of polymerizatidwh of the connector chains, while for longer chains the dependence
becomesN®?. Based on the geometry of the initial chain configuration, we propose a scaling argument that
accounts for both short and long chain limits and the crossover between[tB2663-651X99)10010-2

PACS numbgs): 81.05.Qk, 62.20.Mk, 68.35.Gy

Creating advanced materials often means mixing differenbector chain on the fracture toughné&ssthe work required
homopolymers to produce systems with desired combinetb separate the interfaces. We consider a “mushroom re-
properties. However, most polymer blends are immisciblegime” [18—-23, where connector chains are grafted with low
They form macroscopically phase-separated mixtures witisurface densityg<1/N1% (N is the number of monomers per
only interfacial van der Waals forces, keeping domains ofgrafted chain andl is the monomer sizeln this low-density
different phases together. The fracture toughness of sudi¢gime, the equilibrium shape of the connector chain in the
blends is limited by one of the interfaces: In ideal defectlesgiomopolymer phase is mushroom or plumelike. Further-
conditions, it is equal to the work of adhesiovi= y,+ y,, morg,_mutual entanglement betvvegn different connectors is
— vap between two homopolymer phases. Heye,and v, negligible. Hence, we need to consider only the behavior of

are respectively the surface energy of homopolysmeand 2 Single chain. Experimental data on the dependence @i
homopolymeB and vy, is the interfacial free energy. Rein- N is scattered, typically assuming a form
forcement of these weak polymeric interfaces is often G~N¢, (1)
achieved by the addition ofA-B diblock copolymers that
compatibilize the blend and strengthen the interfibe3].  where estimates give variouslysla<2 [5,10]. Both linear
The strengthening can be attributed to the miscibility of eactand quadratic dependences®fon N have been predicted,
block with one of the homopolymers. This causes the blochutilizing a tube picturd24]. Different constitutive equations
copolymer to expand and entangle with homopolymer phasdsave been proposed which relate the local stress in planar
on either side of the interface. The interfacial tensfen-  cohesive zone near the crack tip to various phenomena, such
ergy) is reduced, the interfacial width is increased, and theas the penetration depth of the chains, their surface density,
adhesion thereby improved. Fracture toughness and failur@nd the pulling ratd13—-15. These studies have been fo-
mechanisms of such reinforced polymeric interfaces haveused mainly on the pull-out fracture in tensile mode, when
been investigated extensively by, for example, experimentthe applied force is normal to the interface. An alternative
on different incompatible systems of polymer glaggkes1(] mode of interface failure is shear fracture, or the resistance
and cross-linked network&lastomergs[11,17. of the interface against slip. In fracture mechanics of bulk
Several theoretical models have been prop¢$dd16to  materials generally only the tensile or opening mode is im-
explain the reinforcing effect of connector chains in bothportant, since cracks normally travel in a direction that maxi-
elastomers and glassy polymers. A “failure mechanismmizes the opening mode. However, for the interface between
map” has been developefb,15,17,1Q which relates the two different materials, the situation can be more complex:
mechanism of interface failure to the polymerization indexThe crack is often constrained to follow the interface, giving
N, surface densityr of connector chains, and the time scalerise to the possibility of crack propagation involving a com-
on which the deformation occurs. According to the failurebination of tensile and shear modéy. Herein we study the
map there are three major mechanisitis:chain scission, dynamics of chain pull-out fracture in both tensile and shear
which happens whenever the stress along the connectonode separately and examine the dependenc¢g ofi N.
chain becomes larger than the strength of the covalent bond We use a Brownian dynamics method, due to Pickett,
between segments of the chafin) pull-out of the connector Jasnow, and Balaz48], which was adapted and modified by
chain as a result of disentanglement from homopolymethose authors from a model of DNA in gel electrophoresis
phase, andiii) failure by craze formation, followed by chain [25], to simulate the pullout of a single connector chain of
scission or chain pull-out, which take place when a largdength N from a two-dimensional homopolymer phase. To
stress is transfered to the bulk of the homopolymer phasesquantify the interface toughness for different chain length,
In this paper we direct our attention to the case whereve calculate the work that is required to pull out the chain
interface failure is due to chain pullout, and specifically fo-with constant velocity,. The homopolymer phase is mod-
cus on the effect of the polymerization inddof the con-  eled by a two-dimensional semi-infinite square latfi2€] of
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obstacles. Each obstacle represents an entanglement or crossd(r;,.,—r;)2

linked point, depending on the glassy or elastomeric StrUC-VZ—dt:Ti+1(ri+2_ri+1)'(ri+1_ri)_27i|2

ture of the homopolymer phase, and provides lateral con-

straint on the movement of the connector chain. The i (ri—=ri)  (Fig1—r)+(Figat 741
connector is represented by a freely jointed chaill dfeads

connected by rigid links, with no self-interaction between the —Fi—=m) - (riga—ri). )

bead.s.c.)ther th.an th? cc_)nstramt of CO”S‘?‘m segment Iengtgf course, application of the constant segmental length con-
The initial configuration is created by putting the first mono- ot implies that the left-hand side of E) should be

mer at the_bou_ndary. and_then continuing _the chain as a faero. However, after several updates of the simulation, an
dom walk in dimensiord=2, with a reflecting boundary at

the interface. The random walk is restricted by requirin aaccumulation of roundoff errors causes the distances be-
‘ yreq 9: 83een some of the adjacent monomers to differ slightly from

we shall see below, that Monomers are repelled by_ the Oti'. Therefore, we have used a correcting factor to ensure the
stacles. The pull-out dynamics is simulated by pulling the

chain by the first monomer at a constant velocity in eithersegmental length stays fixed, and that the algorithm is stable,
tensile mode(perpendicular to the interfag@er shear mode d(riz,—r)? (Irigi—ril=1)
(parallel to the interfage This is done conveniently by mov- ot ~riga—ril — adt ©®)
ing the obstacle matrix at velocity vy while keeping the
first monomer fixed. That is, if; is the position of theth ~ Equation(2) is solved using a fourth-order Runga-Kutta al-
monomer,dr,/dt=0. gorithm.
The movement of the othér2,... N monomers is gov- We consider reduced units in whiagh vy, o, kgT, and
erned by the following over-damped Langevin equation: D, the distance between obstacles, are set equal to unity. The
distance between two adjacent monomers in connector chain
| is chosen to be 0.4. The time step of the simulation, typi-
v(ﬁ—v cally 10 4 to 10 %, is adjusted so that the average difference
dt ° in segment length from in each run is less than 0.1%. The
results were averaged over-2Q00 independent realizations
) . o of the initial conditions.
wherery.,=ry. Here,7; is the amplitude of tension in the  Figyre 1 shows a snapshot of the simulation for both ten-
segment connecting monomeérandi +1, 7 is the random  gjle and shear pullout. We quantify the fracture toughness of
Gaussian noise representing the effect of thermal fluctuationg,e interface by determining the wofk required to remove
on each monomer, and is the viscous friction coefficient he connector chain completely from the obstacle lattice. The
per monomer. The strength of the vectorial random noise i§,ork is G=/Pdt, where the poweP is obtained viaP
rglat.ed .to the monomeric friction by the fluctuation- =v,r, Vo is the constant pulling velocity, andis the in-
dissipation theorem for Its components, labeled by Greekantaneous tension in the segment crossing the boundary of
superscripts,  (7(t) 7 (t'))=2vkgT8p 45 ;0(t—t'),  the obstacle lattice in the pulling direction at each time step.
where kg is Boltzmann’s constant and is temperature. In the case of the shear mode, the boundary being crossed is
Fi(Ar;) is a short range monomer-obstacle repulsive forceindicated in Fig. 1b).
whereAr; is the distance between tlihh monomer and the Figure 2 shows the fracture toughn&ssas a function of
closest obstacle. Foir;|<r, there is hard-core repulsion. the polymerization indeX of the connector chain for tensile
For r.<|Ar;|<2r., there is soft-core repulsion, where the and shear modes. Naturally, the fracture toughness grows as
force obeys the degree of polymerization of the connector chain in-
creases. This growth is more significant for larfjedue to
5 the fact that longer connectors can penetrate well beyond the
i 1 (3  Neighborhood of the interface. They entangle efficiently with
|Ar|2—rZ 3rZ the bulk polymers of the compatible phase. It also shows that
the effect of reinforcement on the interface is higher in ten-
sile mode, by a factor of about 5 for the present mdaél.
The parameter controls the strength of the for¢@5]. For  One can notice the existence of two scaling regimesGor
larger separation$Ar;|>2r, there is no force acting on the versusN, corresponding to short connectof$<N,, and
monomer. In our simulations we have usge-1/2, wherel  |ong connectorsN>N,, whereN, is the crossover length.
is the link length of the connector chain. Figure 3 shows the power-law dependenceSobn N. For
To solve Eq.(2), the tensionsr; in each segment of the short connector§ scales linearly wittN, G~N, while for
connector chain have to be determined. This is done by enong connectors it scales &-~ N2

=7(ligi—r)—7-1(ri—ric)+F+n, (2

Fi:O'Ari(

forcing the constant segmental length constraint, These regimes can be understood as follows. For dxhall
the chain is entangled with one or two layers of obstacles,
Iri—ril?=12, (4)  even if the free radius of gyratioR,~I JN is of order or

smaller than the obstacle lattice spacibg Since the the

initial configuration is repelled by the obstacles, the available
for 1<i<N-1. Taking the derivative of this with respect to phase space for a chain is quite restricted. For the first few
time, and using Eq(2), results in a tridiagonal matrix equa- chain segments, the reflecting boundary condition and the the
tion for the 7;’s [25], area taken up by the obstacles results in the chains going
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FIG. 1. Snapshot of a simulation of fracture for a chairNef 700 monomers(a) tensile andb) shear mode.

straight into the lattice. After passing the first row or two of where the integral is over the time it takes to remove the
obstacles, the chain, if it is long enough, usually bends, withehain from the matrix, which is consistent with the linear
tight loops around obstacle cores being highly improbablegcajing regime observed in simulations for short connectors.

When the qhaln is pulled out, th‘? dominant determlnls.tlc part o largeN, the penetration depth increases. Indeed, for
of the tension equals the total viscous drag force. This forc%ufficientl largeN. the chain center of mass is located at a
is roughly proportional to the number of monomé\s,,, . y largen,

simultaneously in motion. Since pulling tension cannotdiStance of the order of the radius of gyratiRy from the
propagate through a loop unless it is tightened around aH}terface._ Then,_ the number of monomers that are _S|multa-
obstacle core, for short chaidy,oe is Of the order of the neously in motion becomes proportional to this distance,
number of monomers stretched in one obstacle lattice spadlmove™Rg~N*?, which we have observed directly. Conse-
ing D, that is,D/I. Hence for smalN, the total work to pull  quently, the pull-out fracture energy becomes

the chain out can be estimated as

Nl/vq 2 D (Nl/vg
G:vOJO Fdragdt”VoVTJO dt=vovND, (7) 65
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FIG. 3. logglog,o plot of G vs N. (@) represents tensile and
(¢©) indicates shear mode. Solid lines show that short-chain data

FIG. 2. Fracture toughnes$s vs N polymerization index of the (N=<100) are consistent withu=1, while long-chain data N
connector chain in tensile®) and shear ¢ ). G is dimensionless. >100) are consistent withk=3/2. G is dimensionless.
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Ni/vg 2 [No ., 2 —0. On the other handz~ N2 is predicted for pull-out frac-
G:VOL l:drath”Vo”Jo NY4dt=vorN¥4, (8)  tures where the crack propagation speed is high or at least
larger than a critical velocity. In other words, these two pre-
where the integral is over the time it takes to remove thedicted regimes differ by the pull-out velocity. The crossover
chain from the matrix. This is roughly analogous to whatbetween the two scaling regime&a~N and G~N*? ob-
happens when one pulls on a wet garden hose of leNgth tained in our simulations takes place in the latter high veloc-
left on the ground by a gardener who has performed a ranity regime: The pulling velocity used in our simulationg
dom walk among a grove of trees. Upon pulling, only the=kgT/(vD) corresponds to relatively fast pulling rgtg0],
currently stretched segment starts to move, if friction in thewhich in turn results in high crack propagation speeds. Our
self-intersections of the hose is negligible. If the hose conwork is in the same regime, and indeed extends the numeri-
figuration was created as a result of a random walk, theal work and theoretical arguments of Pickett, Jasnow, and
length of such a segment scales as a typical size of suchBalazg[18], wherein this model was introduced. For lafge
walk, VN, whereN is the total length of the hose. The hose Picket et al. arguedG~N? in contrast to our result oG
configuration may include a few loops around the tree~N¥2 This was based on an analogy of the polymer to the
trunks; upon tightening, these loops also start to move, agnotion of a rope in “block and tackle” pulleys. In that case,
suming friction is negligible. The total length of these tight- the average drag force to pull the connector chain out of the
ened loops has no important contribution: That length scalematrix is f 4,54~ »voN. Hence, it follows that the number of
as a winding angle of a random walk of the lengithi.e., as monomers instantaneously in motion &g~ N. In fact,
InN (see, for example, Reff28]). As a result, the drag force the correct analogy is not to pulleys, but to the motion of a
is proportional to the length of the hose that is constantly ingarden hose lying on grass, as described above. Thap
motion, yN. ~N*2, giving rise to the 3/2 exponent. Our numerical re-
Although our numerical work is in two dimensions, thesesults, which are more extensive than those of the earlier
physical arguments also follow in three dimensions, and argork, support this picture.
applicable to experimental systefi29]. The smallN regime To conclude, we studied the chain pull-out fracture of a
crosses over to a largeé regime when the radius of gyration reinforced polymeric interface in tensile and shear modes.
R, becomes of order of the obstacle spacihgThat gives ~ Our results confirm the nonlinear dependence of the fracture

N¢ross~[D/17%, and we expect toughness of the interface on the length of the connector
chain observed in experiments. We found that, depending on
G=NTf(N/N¢os9), (9)  the length of connector chain, the fracture toughness of the

h h i ; ) b interface shows different scaling dependences: For short
where 't edfcrossover Scaling function obey¢x—0)  chains,G scales linearly wittN, while for long connectors,
=const, andf (x—oc) =x"% we observed a crossover to a new scaling reg@reN®

As mentioned earlier, different forms of the power-low o resylits can be tested experimentally on elastomeric net-
dependence ob on N have been proposed in previous the-yoris for long connector chains in the low coverage mush-
oretical studies: Botle~N andG~N* have been predicted. 5om regimel31].

The results from experiments are somewhat ambiguous. The

linear dependence @ on N [13] is predicted for very slow This work was supported by the Natural Sciences and
crack propagation velocities, and therefore corresponds t&ngineering Research Council of Canada EnEonds pour
G—G,, where G, is the fracture toughness threshold orla Formation de Chercheurs et I'Aide & Recherche de
minimal energy required to break the interface whep  Quebec
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