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Molecular weight effects on chain pull-out fracture of reinforced polymeric interfaces

Mohsen Sabouri-Ghomi,1 Slava Ispolatov,1,2 and Martin Grant1
1Physics Department and Center for the Physics of Materials, Rutherford Building, McGill University,

3600 rue University, Montre´al, Québec, Canada H3A 2T8
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Using Brownian dynamics, we simulate the fracture of polymer interfaces reinforced by diblock connector
chains. We consider the mushroom regime, where connector chains are grafted with low surface density, for
the case of large pulling velocities. We find that for short chains the interface fracture toughness depends
linearly on the degree of polymerizationN of the connector chains, while for longer chains the dependence
becomesN3/2. Based on the geometry of the initial chain configuration, we propose a scaling argument that
accounts for both short and long chain limits and the crossover between them.@S1063-651X~99!10010-2#

PACS number~s!: 81.05.Qk, 62.20.Mk, 68.35.Gy
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Creating advanced materials often means mixing differ
homopolymers to produce systems with desired combi
properties. However, most polymer blends are immiscib
They form macroscopically phase-separated mixtures w
only interfacial van der Waals forces, keeping domains
different phases together. The fracture toughness of s
blends is limited by one of the interfaces: In ideal defectl
conditions, it is equal to the work of adhesionW5ga1gb

2gab between two homopolymer phases. Here,ga and gb

are respectively the surface energy of homopolymerA and
homopolymerB andgab is the interfacial free energy. Rein
forcement of these weak polymeric interfaces is of
achieved by the addition ofA-B diblock copolymers that
compatibilize the blend and strengthen the interface@1–3#.
The strengthening can be attributed to the miscibility of ea
block with one of the homopolymers. This causes the blo
copolymer to expand and entangle with homopolymer pha
on either side of the interface. The interfacial tension~en-
ergy! is reduced, the interfacial width is increased, and
adhesion thereby improved. Fracture toughness and fa
mechanisms of such reinforced polymeric interfaces h
been investigated extensively by, for example, experime
on different incompatible systems of polymer glasses@4–10#
and cross-linked networks~elastomers! @11,12#.

Several theoretical models have been proposed@13–16# to
explain the reinforcing effect of connector chains in bo
elastomers and glassy polymers. A ‘‘failure mechani
map’’ has been developed@5,15,17,10# which relates the
mechanism of interface failure to the polymerization ind
N, surface densitys of connector chains, and the time sca
on which the deformation occurs. According to the failu
map there are three major mechanisms:~i! chain scission,
which happens whenever the stress along the conne
chain becomes larger than the strength of the covalent b
between segments of the chain,~ii ! pull-out of the connector
chain as a result of disentanglement from homopolym
phase, and~iii ! failure by craze formation, followed by chai
scission or chain pull-out, which take place when a la
stress is transfered to the bulk of the homopolymer phas

In this paper we direct our attention to the case wh
interface failure is due to chain pullout, and specifically f
cus on the effect of the polymerization indexN of the con-
PRE 601063-651X/99/60~4!/4460~5!/$15.00
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nector chain on the fracture toughnessG, the work required
to separate the interfaces. We consider a ‘‘mushroom
gime’’ @18–23#, where connector chains are grafted with lo
surface density,s!1/Nl2 ~N is the number of monomers pe
grafted chain andl is the monomer size!. In this low-density
regime, the equilibrium shape of the connector chain in
homopolymer phase is mushroom or plumelike. Furth
more, mutual entanglement between different connector
negligible. Hence, we need to consider only the behavio
a single chain. Experimental data on the dependence ofG on
N is scattered, typically assuming a form

G;Na, ~1!

where estimates give variously 1<a<2 @5,10#. Both linear
and quadratic dependences ofG on N have been predicted
utilizing a tube picture@24#. Different constitutive equations
have been proposed which relate the local stress in pla
cohesive zone near the crack tip to various phenomena,
as the penetration depth of the chains, their surface den
and the pulling rate@13–15#. These studies have been fo
cused mainly on the pull-out fracture in tensile mode, wh
the applied force is normal to the interface. An alternat
mode of interface failure is shear fracture, or the resista
of the interface against slip. In fracture mechanics of b
materials generally only the tensile or opening mode is
portant, since cracks normally travel in a direction that ma
mizes the opening mode. However, for the interface betw
two different materials, the situation can be more compl
The crack is often constrained to follow the interface, givi
rise to the possibility of crack propagation involving a com
bination of tensile and shear modes@2#. Herein we study the
dynamics of chain pull-out fracture in both tensile and sh
mode separately and examine the dependence ofG on N.

We use a Brownian dynamics method, due to Pick
Jasnow, and Balazs@18#, which was adapted and modified b
those authors from a model of DNA in gel electrophore
@25#, to simulate the pullout of a single connector chain
length N from a two-dimensional homopolymer phase. T
quantify the interface toughness for different chain leng
we calculate the work that is required to pull out the cha
with constant velocityv0 . The homopolymer phase is mod
eled by a two-dimensional semi-infinite square lattice@26# of
4460 © 1999 The American Physical Society
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obstacles. Each obstacle represents an entanglement or c
linked point, depending on the glassy or elastomeric str
ture of the homopolymer phase, and provides lateral c
straint on the movement of the connector chain. T
connector is represented by a freely jointed chain ofN beads
connected by rigid links, with no self-interaction between t
beads other than the constraint of constant segment len
The initial configuration is created by putting the first mon
mer at the boundary and then continuing the chain as a
dom walk in dimensiond52, with a reflecting boundary a
the interface. The random walk is restricted by requiring,
we shall see below, that monomers are repelled by the
stacles. The pull-out dynamics is simulated by pulling t
chain by the first monomer at a constant velocity in eith
tensile mode~perpendicular to the interface! or shear mode
~parallel to the interface!. This is done conveniently by mov
ing the obstacle matrix at velocity1v0 while keeping the
first monomer fixed. That is, ifr i is the position of thei th
monomer,dr 1 /dt[0.

The movement of the otheri 52,...,N monomers is gov-
erned by the following over-damped Langevin equation:

nS dr i

dt
2v0D5t i~r i112r i!2t i 21~r i2r i21!1Fi1hi , ~2!

whererN11[rN . Here,t i is the amplitude of tension in th
segment connecting monomersi and i 11, hi is the random
Gaussian noise representing the effect of thermal fluctuat
on each monomer, andn is the viscous friction coefficien
per monomer. The strength of the vectorial random nois
related to the monomeric friction by the fluctuatio
dissipation theorem for its components, labeled by Gr

superscripts, ^h i
b(t)h j

b8(t8)&52nkBTdb,b8d i , jd(t2t8),
where kB is Boltzmann’s constant andT is temperature.
Fi(Dr i) is a short range monomer-obstacle repulsive for
whereDr i is the distance between thei th monomer and the
closest obstacle. ForuDr iu,r c , there is hard-core repulsion
For r c,uDr iu,2r c , there is soft-core repulsion, where th
force obeys

Fi5sDr iS 1

uDr iu22r c
2 2

1

3r c
2D 2

. ~3!

The parameters controls the strength of the force@25#. For
larger separations,uDr iu.2r c , there is no force acting on th
monomer. In our simulations we have usedr c5 l /2, wherel
is the link length of the connector chain.

To solve Eq.~2!, the tensionst i in each segment of the
connector chain have to be determined. This is done by
forcing the constant segmental length constraint,

ur i112r iu25 l 2, ~4!

for 1, i ,N21. Taking the derivative of this with respect t
time, and using Eq.~2!, results in a tridiagonal matrix equa
tion for thet i ’s @25#,
oss-
c-
n-
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n
d~r i112r i!

2

2dt
5t i 11~r i122r i11!•~r i112r i!22t i l

2

1t i 21~r i2r i21!•~r i112r i!1~Fi111hi 11

2Fi2hi!•~r i112r i!. ~5!

Of course, application of the constant segmental length c
straint implies that the left-hand side of Eq.~5! should be
zero. However, after several updates of the simulation,
accumulation of roundoff errors causes the distances
tween some of the adjacent monomers to differ slightly fro
l . Therefore, we have used a correcting factor to ensure
segmental length stays fixed, and that the algorithm is sta

d~r i112r i!
2

2dt
52ur i112r iu

~ ur i112r iu2 l !

dt
. ~6!

Equation~2! is solved using a fourth-order Runga-Kutta a
gorithm.

We consider reduced units in whichn, v0 , s, kBT, and
D, the distance between obstacles, are set equal to unity.
distance between two adjacent monomers in connector c
l is chosen to be 0.4. The time step of the simulation, ty
cally 1024 to 1025, is adjusted so that the average differen
in segment length froml in each run is less than 0.1%. Th
results were averaged over 202100 independent realization
of the initial conditions.

Figure 1 shows a snapshot of the simulation for both t
sile and shear pullout. We quantify the fracture toughnes
the interface by determining the workG required to remove
the connector chain completely from the obstacle lattice. T
work is G5*Pdt, where the powerP is obtained viaP
5v0t, v0 is the constant pulling velocity, andt is the in-
stantaneous tension in the segment crossing the bounda
the obstacle lattice in the pulling direction at each time st
In the case of the shear mode, the boundary being cross
indicated in Fig. 1~b!.

Figure 2 shows the fracture toughnessG as a function of
the polymerization indexN of the connector chain for tensil
and shear modes. Naturally, the fracture toughness grow
the degree of polymerization of the connector chain
creases. This growth is more significant for largerN due to
the fact that longer connectors can penetrate well beyond
neighborhood of the interface. They entangle efficiently w
the bulk polymers of the compatible phase. It also shows
the effect of reinforcement on the interface is higher in te
sile mode, by a factor of about 5 for the present model@27#.
One can notice the existence of two scaling regimes forG
versusN, corresponding to short connectors,N,Nc , and
long connectors,N.Nc , whereNc is the crossover length
Figure 3 shows the power-law dependence ofG on N. For
short connectorsG scales linearly withN, G;N, while for
long connectors it scales asG;N3/2.

These regimes can be understood as follows. For smalN,
the chain is entangled with one or two layers of obstac
even if the free radius of gyrationRg' lAN is of order or
smaller than the obstacle lattice spacingD. Since the the
initial configuration is repelled by the obstacles, the availa
phase space for a chain is quite restricted. For the first
chain segments, the reflecting boundary condition and the
area taken up by the obstacles results in the chains g
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FIG. 1. Snapshot of a simulation of fracture for a chain ofN5700 monomers:~a! tensile and~b! shear mode.
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straight into the lattice. After passing the first row or two
obstacles, the chain, if it is long enough, usually bends, w
tight loops around obstacle cores being highly improbab
When the chain is pulled out, the dominant deterministic p
of the tension equals the total viscous drag force. This fo
is roughly proportional to the number of monomersNmove
simultaneously in motion. Since pulling tension cann
propagate through a loop unless it is tightened around
obstacle core, for short chainsNmove is of the order of the
number of monomers stretched in one obstacle lattice sp
ing D, that is,D/ l . Hence for smallN, the total work to pull
the chain out can be estimated as

G5v0E
0

Nl/v0
Fdragdt;v0

2n
D

l E0

Nl/v0
dt5v0nND, ~7!

FIG. 2. Fracture toughnessG vs N polymerization index of the
connector chain in tensile (d) and shear (L). G is dimensionless.
f
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where the integral is over the time it takes to remove
chain from the matrix, which is consistent with the line
scaling regime observed in simulations for short connect

For largeN, the penetration depth increases. Indeed,
sufficiently largeN, the chain center of mass is located a
distance of the order of the radius of gyrationRg from the
interface. Then, the number of monomers that are simu
neously in motion becomes proportional to this distan
Nmove'Rg;N1/2, which we have observed directly. Cons
quently, the pull-out fracture energy becomes

FIG. 3. log10-log10 plot of G vs N. (d) represents tensile an
(L) indicates shear mode. Solid lines show that short-chain d
(N<100) are consistent witha51, while long-chain data (N
.100) are consistent witha53/2. G is dimensionless.
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G5v0E
0

Nl/v0
Fdragdt;v0

2nE
0

Nl/v0
N1/2dt5v0nN3/2l , ~8!

where the integral is over the time it takes to remove
chain from the matrix. This is roughly analogous to wh
happens when one pulls on a wet garden hose of lengthN,
left on the ground by a gardener who has performed a
dom walk among a grove of trees. Upon pulling, only t
currently stretched segment starts to move, if friction in
self-intersections of the hose is negligible. If the hose c
figuration was created as a result of a random walk,
length of such a segment scales as a typical size of su
walk, AN, whereN is the total length of the hose. The ho
configuration may include a few loops around the tr
trunks; upon tightening, these loops also start to move,
suming friction is negligible. The total length of these tigh
ened loops has no important contribution: That length sc
as a winding angle of a random walk of the lengthN, i.e., as
ln N ~see, for example, Ref.@28#!. As a result, the drag force
is proportional to the length of the hose that is constantly
motion,AN.

Although our numerical work is in two dimensions, the
physical arguments also follow in three dimensions, and
applicable to experimental systems@29#. The smallN regime
crosses over to a largeN regime when the radius of gyratio
Rg becomes of order of the obstacle spacingD. That gives
Ncross;@D/ l #2, and we expect

G5N f~N/Ncross!, ~9!

where the crossover scaling function obeysf (x→0)
5const, andf (x→`)5x1/2.

As mentioned earlier, different forms of the power-lo
dependence ofG on N have been proposed in previous th
oretical studies: BothG;N andG;N2 have been predicted
The results from experiments are somewhat ambiguous.
linear dependence ofG on N @13# is predicted for very slow
crack propagation velocities, and therefore correspond
G→G0 , where G0 is the fracture toughness threshold
minimal energy required to break the interface whenv0
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→0. On the other hand,G;N2 is predicted for pull-out frac-
tures where the crack propagation speed is high or at l
larger than a critical velocity. In other words, these two p
dicted regimes differ by the pull-out velocity. The crossov
between the two scaling regimesG;N and G;N3/2 ob-
tained in our simulations takes place in the latter high vel
ity regime: The pulling velocity used in our simulationsv0
5kBT/(nD) corresponds to relatively fast pulling rate@30#,
which in turn results in high crack propagation speeds. O
work is in the same regime, and indeed extends the num
cal work and theoretical arguments of Pickett, Jasnow,
Balazs@18#, wherein this model was introduced. For largeN,
Picket et al. arguedG;N2 in contrast to our result ofG
;N3/2. This was based on an analogy of the polymer to
motion of a rope in ‘‘block and tackle’’ pulleys. In that cas
the average drag force to pull the connector chain out of
matrix is f drag;nv0N. Hence, it follows that the number o
monomers instantaneously in motion areNmove;N. In fact,
the correct analogy is not to pulleys, but to the motion o
garden hose lying on grass, as described above. Thenf drag
;N1/2, giving rise to the 3/2 exponent. Our numerical r
sults, which are more extensive than those of the ear
work, support this picture.

To conclude, we studied the chain pull-out fracture o
reinforced polymeric interface in tensile and shear mod
Our results confirm the nonlinear dependence of the frac
toughness of the interface on the length of the conne
chain observed in experiments. We found that, depending
the length of connector chain, the fracture toughness of
interface shows different scaling dependences: For s
chains,G scales linearly withN, while for long connectors,
we observed a crossover to a new scaling regimeG;N3/2.
Our results can be tested experimentally on elastomeric
works for long connector chains in the low coverage mu
room regime@31#.
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Engineering Research Council of Canada andle Fonds pour
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